top of page

Publications and Preprints

Preprints 

(Note:     students under my supervision;  * corresponding author)

Jiale Han and Xiaowu Dai*. 

Preprint, 2024+.

  • Multi-layer kernel machines: Fast and optimal nonparametric regression with uncertainty quantification. [pdf][code][PyPI]

Xiaowu Dai* and Huiying Zhong.  

Preprint, 2024+.

  • Incentive-aware recommender systems in two-sided markets. [pdf][code]

Xiaowu Dai*, Yuan Qi, and Michael Jordan.   

Preprint, 2023+; Under Revisions at ACM Transactions on Recommender Systems.

  • Another look at statistical calibration: A non-asymptotic theory and prediction-oriented optimality. [pdf]

Xiaowu Dai and Peter Chien. 

Preprint, 2023+.

  • Selection and estimation optimality in high dimensions with the TWIN penalty. [pdf]

Xiaowu Dai and Jared Huling.

Preprint, 2023+.

  • An ODE model for dynamic matching in heterogeneous networks. [pdf][code]

Xiaowu Dai* and Hengzhi He.

Preprint, 2023+; Under Revisions at Journal of the American Statistical Association: Theory and Methods.

  • Nonparametric estimation via mixed gradients. [pdf]

Xiaowu Dai*.

Preprint, 2023+; Under Revisions at Journal of the Royal Statistical Society: Series B.

Publications

(Note:     students under my supervision;  * corresponding author)

  • Two-sided competing matching recommendation markets with quota and complementary preferences constraints. [preprint][code]

Yuantong Li, Guang Cheng, and Xiaowu Dai*.

International Conference on Machine Learning (ICML), 2024.

  • Post-regularization confidence bands for ordinary differential equations. [journal][preprint]

Xiaowu Dai* and Lexin Li. 

Journal of Machine Learning Research (JMLR), 2024.

  • Discussion of 'Estimating means of bounded random variables by betting' by Waudby-Smith and Ramdas. [journal][reprint][preprint][code]

Jiayi Li, Yuantong Li, and Xiaowu Dai*. 

Journal of the Royal Statistical Society: Series B (JRSSB), 2023.

Xiaowu Dai*, Xiang Lyu, and Lexin Li.

Journal of the American Statistical Association: Theory and Methods (JASA), 2023.

  • A resampling approach for causal inference on novel two-point time-series with application to identify risk factors for type-2 diabetes and cardiovascular disease. [journal][reprint][preprint][code]

Xiaowu Dai*, Saad Mouti, Marjorie Lima do Vale, Sumantra Ray, Jeffrey Bohn, and Lisa Goldberg. 

Statistics in Biosciences (SIBS), 2023.

Xiaowu Dai and Lexin Li.

Journal of the American Statistical Association: Theory and Methods (JASA), 2022.

Xiaowu Dai and Lexin Li.

Journal of the American Statistical Association: Theory and Methods (JASA), 2022.

Xiaowu Dai and Michael Jordan.

Advances in Neural Information Processing Systems (NeurIPS), 2021.

  • Learning strategies in decentralized matching markets under uncertain preferences. [journal][preprint]

Xiaowu Dai and Michael Jordan.

Journal of Machine Learning Research (JMLR), 2021.

  • A synthesis of pathways linking diet, metabolic risk and cardiovascular disease: A framework to guide further research and approaches to evidence-based practice. [journal][reprint][pubmed]

Marjorie Lima do Vale, Luke Buckner, Claudia-Gabriela Mitrofan, Kai Sento Kargbo, Rajna Golubic, Ali Ahsan Khalid, Sammyia Ashraf, Saad Mouti, Xiaowu Dai, David Unwin, Jeffrey Bohn, Lisa Goldberg, and Sumantra Ray.​ 

Nutrition Research Reviews (NRR), 2021.

Xiaowu Dai and Yuhua Zhu.

Journal of Statistical Theory and Practice (JSTP), special issue on "Advances in Deep Learning", 2020. 

  • High-dimensional smoothing splines and application in Alzheimer's disease prediction using magnetic resonance imaging. [journal][reprint][preprint]

Xiaowu Dai.

Statistics in Biopharmaceutical Research (SBR), 2020.

  • High-dimensional varying coefficient models for Alzheimer's disease diagnosis with longitudinal and heterogeneous structural MR images. [journal]

Xiaowu Dai.

Alzheimer's & Dementia (AD), 2018.

Miscellaneous

  • Statistical learning-aided design for a blockchain payment system. [pdf]

Xiaowu Dai. 

Research Vignette, Simons Institute for the Theory of Computing, 2020.

  • Statistical machine learning for complex data sets. [pdf]

Xiaowu Dai. 

Ph.D. Thesis, Department of Statistics, UW-Madison, 2019.

bottom of page