top of page

Grants

​​​

Federal Grants​​​​​​​

  • National Science Foundation, "Non-Parametric Estimation for Multimodal Data: From Statistical Theory to Efficient Algorithms."​​ (current

    • NSF DMS Award #2515903, 9/2025-8/2028.  Role: PI.​​​​​​​​​​​

    • This grant is currently on administrative hold due to federal and UCLA circumstances.

​

  • National Institutes of Health, "Uncertainty Quantification for Diabetes LLMs."​​ (current

    • NIH dkNET AI Pilot Funding Program, 9/2025-8/2026.  Role: MPI (X. Dai/J. Zhou)

​

  • National Institutes of Health, "Transforming Precision Medicine: Dynamic Learning and Prediction of Disease Progression in Massive, Diverse, and Multimodal Cohorts."​​ (current

    • NIH R01DK142026, $2.1M, 3/2025-12/2028.  Role: Co-I (My effort: $300K for 4 years). In collaboration with PI J. Zhou.

​

  • National Science Foundation, "Conference: UCLA Synthetic Data Workshop." ​​(completed)

    • NSF DMS Award #2309349, 4/1/2023-3/31/2024.  Role: Co-PI. In collaboration with PI G. Cheng. ​​

​

  • National Science Foundation, "Development of Machine Learning Technology for Matching under a Variety of Realistic and Large-Scale Preference Structures."​ â€‹â€‹(completed)

    • NSF IIP Award #2133869, 6/1/2021-11/30/2022.  Role: EL (similar to Co-PI). In collaboration with PI L. Li. ​​

​

 

Industrial Grants​​​​​

  • Merck & Co., "Dynamic Double Machine Learning for High-dimensional Causal Inference in Neuroscience Applications." ​​​(current)

    • Merck Research Grant, $300K for 2 years, 1/1/2025-12/31/2026 Role: MPI (X. Dai/H. Zhou/J. Zhou).

​

  • Amazon, "Optimal Data Augmentation Strategy Search." ​​​(completed)

    • Amazon Research Grant, $60K, 7/1/2020-6/30/2021 Role: Co-PI.​ In collaboration with PI R. M. Anderson.​

​

​

University Grants​​​​​

  • Hellman Foundation, "Uncertainty Quantification for AI Models." ​​​(current)

    • Hellman Fellows Award, 7/1/2025-6/30/2026 Role: PI.​

​​

  • University of California, Los Angeles, "Advancing Understanding and Diagnosis of Alzheimer's Disease through Interpretable Machine Learning." ​​​(current)

    • Research Grant, 7/1/2023-6/30/2024 (year 1); 7/1/2024-6/30/2025 (year 2); 7/1/2025-6/30/2026 (year 3) Role: PI.​

​

  • University of California, Los Angeles, "Interpretable Machine Learning for Neuroimaging Analysis under Heterogenous Population." ​​​(completed)

nsf-logo-298x300.png
NIH-logo_150.png
ucla.png
logo_hellman_fellows_fund_200.png
amazon.jpeg
merck.png
© 2025 Xiaowu Dai
bottom of page