top of page

​​

Economics and Machine Learning​

[Matching markets, Mechanism design, Incentive Theory]

(Note:     students under my supervision;  * corresponding author.)​

 

Matching markets​​

​

  • Learning strategies in decentralized matching markets under uncertain preferences. [journal][preprint]

Xiaowu Dai and Michael Jordan. 

Journal of Machine Learning Research (JMLR), 2021. [lead article]

​

Xiaowu Dai and Michael Jordan. 

Advances in Neural Information Processing Systems (NeurIPS), 2021.

​

  • Two-sided competing matching recommendation markets with quota and complementary preferences constraints. [proceedings][preprint][code]

Yuantong Li, Guang Cheng, and Xiaowu Dai*. 

International Conference on Machine Learning (ICML), 2024.

​​

  • An ODE model for dynamic matching in heterogeneous networks. [pdf][code]

Xiaowu Dai* and Hengzhi He.

Preprint, 2023.

​​

  • A data envelopment analysis approach for assessing fairness in resource allocation: Application to kidney exchange programs. [pdf][code]

Ali Kaazempur-Mofrad, and Xiaowu Dai*.

Preprint, 2024.

​​​

Mechanism design

​​​

Jiale Han and Xiaowu Dai*.   

Under R&R at Journal of the American Statistical Association (JASA), 2025.

​

  • Learn then decide: A learning approach for designing data marketplaces. [pdf​][code]

Yingqi Gao, Jin Zhou, Hua Zhou, Yong Chen, and Xiaowu Dai*.

Preprint, 2025.

​​

 

Incentive Theory

​

Xiaowu Dai*, Wenlu Xu, Yuan Qi, and Michael Jordan.

ACM Transactions on Recommender Systems (TORS), 2024.

​​

  • Dynamic online recommendation for two-sided market with Bayesian incentive compatibility. [pdf]

Yuantong Li, Guang Cheng, and Xiaowu Dai*.

Preprint, 2024.

​

​​​

​

I'm also interested in designing real-world matching systems.

​​

  • For example, I designed Hilbert Matching [App Store] for the clothing industry. 

© 2025 Xiaowu Dai
bottom of page