top of page

 

​​Economics and Machine Learning​

[Matching markets, Mechanism design, Incentive Theory]

(Note:     students under my supervision;  * corresponding author.)​

 

Mechanism design

​​​

  • Online auction design using distribution-free uncertainty quantification with applications to e-commerce. [pdf][code][older versioncode]

Jiale Han and Xiaowu Dai*.   

Under R&R at Journal of the American Statistical Association (JASA), 2025.

​

  • Learn then decide: A learning approach for designing data marketplaces. [pdf​][code]

Yingqi Gao, Jin Zhou, Hua Zhou, Yong Chen, and Xiaowu Dai*.

Preprint, 2025.

​

Incentive Theory

​

Xiaowu Dai*, Wenlu Xu, Yuan Qi, and Michael Jordan.

ACM Transactions on Recommender Systems (TORS), 2024.

​​

  • Dynamic online recommendation for two-sided market with Bayesian incentive compatibility. [pdf]

Yuantong Li, Guang Cheng, and Xiaowu Dai*.

Preprint, 2024.

​

Matching markets​​

​

  • Learning strategies in decentralized matching markets under uncertain preferences. [journal][preprint]

Xiaowu Dai and Michael Jordan. 

Journal of Machine Learning Research (JMLR), 2021. 

​

Xiaowu Dai and Michael Jordan. 

Advances in Neural Information Processing Systems (NeurIPS), 2021.

​

  • Two-sided competing matching recommendation markets with quota and complementary preferences constraints. [proceedings][preprint][code]

Yuantong Li, Guang Cheng, and Xiaowu Dai*. 

International Conference on Machine Learning (ICML), 2024.

​​

  • A data envelopment analysis approach for assessing fairness in resource allocation: Application to kidney exchange programs. [pdf][code]

Ali Kaazempur-Mofrad, and Xiaowu Dai*.

Under R&R at Annals of Applied Statistics (AoAS), 2024.

​​

  • Note: I'm also interested in designing real-world matching systems. I designed Hilbert Matching [App Store] for the clothing industry. â€‹â€‹â€‹â€‹â€‹

​​​​​

© 2025 Xiaowu Dai
bottom of page