​​
Uncertainty Quantification and Causality
[Kernel methods, Statistical inference, Causal inference]
(Note: students under my supervision; * corresponding author.)
​
Kernel methods​
​
Xiaowu Dai*, Xiang Lyu, and Lexin Li.
Journal of the American Statistical Association: Theory and Methods (JASA), 2023. [lead article].
​
-
Nonparametric estimation via partial derivatives. [journal​][preprint][UCLA StatsDS News​][UCLA Physical Sciences News​]
Xiaowu Dai*.
Journal of the Royal Statistical Society Series B: Statistical Methodology (JRSSB), 2024. [lead article]
​
-
Another look at statistical calibration: A non-asymptotic theory and prediction-oriented optimality. [pdf]
Xiaowu Dai and Peter Chien.
Preprint, 2023.
​
-
Multi-layer kernel machines: Fast and optimal nonparametric regression with uncertainty quantification. [pdf][code][PyPI]
Xiaowu Dai* and Huiying Zhong.
Preprint, 2024.
​
Jiale Han, Xiaowu Dai*, and Yuhua Zhu.
Preprint, 2025.
​​
Statistical inference
​​
-
Discussion: "Estimating means of bounded random variables by betting" by Waudby-Smith and Ramdas. [journal][reprint​][preprint][code]
Jiayi Li, Yuantong Li, and Xiaowu Dai*.
Journal of the Royal Statistical Society Series B: Statistical Methodology (JRSSB), 2023.
​
-
Conformal online auction design. [pdf][code][older version, code]
Jiale Han and Xiaowu Dai*.
Under R&R at Journal of the American Statistical Association (JASA), 2025.
​
-
Selection and estimation optimality in high dimensions with the TWIN penalty. [pdf]
Xiaowu Dai and Jared Huling.
Preprint, 2023.
​​
​
Causal inference
​
-
Orthogonalized kernel debiased machine learning for multimodal data analysis. [journal][reprint][preprint]
Xiaowu Dai and Lexin Li.
Journal of the American Statistical Association: Theory and Methods (JASA), 2022. [lead article]