top of page

​​

Uncertainty Quantification and Causality

[Kernel methods, Statistical inference, Causal inference]

(Note:     students under my supervision;  * corresponding author.)

​

Kernel methods​

​

Xiaowu Dai*, Xiang Lyu, and Lexin Li.

Journal of the American Statistical Association: Theory and Methods (JASA), 2023. [lead article].

​

Xiaowu Dai*

Journal of the Royal Statistical Society Series B: Statistical Methodology (JRSSB), 2024. [lead article]

​

  • Another look at statistical calibration: A non-asymptotic theory and prediction-oriented optimality. [pdf]

Xiaowu Dai and Peter Chien. 

Preprint, 2023.

​

  • Multi-layer kernel machines: Fast and optimal nonparametric regression with uncertainty quantification. [pdf][code][PyPI]

Xiaowu Dai* and Huiying Zhong.

Preprint, 2024.

​

  • Variance reduction via resampling and experience replay. [pdf][code]

Jiale Han, Xiaowu Dai*, and Yuhua Zhu.

Preprint, 2025.

​​

 

Statistical inference

​​

  • Discussion: "Estimating means of bounded random variables by betting" by Waudby-Smith and Ramdas. [journal][reprint​][preprint][code]

Jiayi Li, Yuantong Li, and Xiaowu Dai*.

Journal of the Royal Statistical Society Series B: Statistical Methodology (JRSSB), 2023.

​

Jiale Han and Xiaowu Dai*.   

Under R&R at Journal of the American Statistical Association (JASA), 2025.

​

  • Selection and estimation optimality in high dimensions with the TWIN penalty. [pdf]

Xiaowu Dai and Jared Huling. 

Preprint, 2023.

​​

​

Causal inference

​

Xiaowu Dai and Lexin Li.

Journal of the American Statistical Association: Theory and Methods (JASA), 2022. [lead article]

© 2025 Xiaowu Dai
bottom of page